Oscilloscope

Review the Textbook on AC Electricity:

- Phys 1402: Serway/Vuille: Section 21.1.
- Phys 2426: Serway/Jewett: Section 33.1-33.2.

AC Voltage and Current is described by a sin-like oscillation instead of a single value: $\mathrm{V}(\mathrm{t})=\mathrm{V}_{\max } \sin (2 \pi \mathrm{ft})$ The product of RMS values of voltage and current describes power delivered by AC power supply.

$$
V_{\mathrm{RMS}}=\frac{V_{\max }}{\sqrt{2}} \quad I_{\mathrm{RMS}}=\frac{I_{\max }}{\sqrt{2}}
$$

On a graph, we tend to read the maximum or peak value of the voltage $\left(V_{\max }\right)$ or current $\left(I_{\max }\right)$. With a multimeter, we tend to read the RMS value of the voltage (V_{RMS}) or current (I_{RMS}).

1. The voltage of an AC power supply is given by the function: $V(t)=15 \sin (377 t)$, where V is in volts and t is in seconds. What is the frequency of this AC voltage?
(60 Hz , because $2 \pi f=377$.)
2. What is the peak voltage $\left(V_{\max }\right)$ of the above AC voltage? (15 V)
3. What is the RMS voltage (V_{RMS}) of the above AC voltage?
(10.6 V)
4. If the above AC voltage is applied to a 100Ω resistor, what is the amplitude ($I_{\max }$) of the current? (0.15 A)
5. If the above AC voltage is applied to a 100Ω resistor, what is the RMS current ($I_{\text {RMS }}$)? (0.106 A)
6. How much power is delivered by the above AC power supply? (1.124W)
7. What is the peak voltage $\left(\mathrm{V}_{\max }\right)$ of the AC power supply shown in Graph 1? (6V)

Graph 1: AC Voltage

